Low-Level Color and Texture Feature Extraction for Content-Based Image Retrieval

نویسنده

  • Michele Saad
چکیده

A flexible multiscale and directional representation for images is proposed. The scheme combines directional filter banks with the Laplacian pyramid to provides a sparse representation for twodimensional piecewise smooth signals resembling images. The underlying expansion is a frame and can be designed to be a tight frame. Pyramidal directional filter banks provide an effective method to implement the digital curvelet transform. The regularity issue of the iterated filters in the directional filter bank is examined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet based Content based Image Retrieval using Color and texture Feature Extraction by Gray Level Coocurence Matrix and Color Coocurence Matrix

In this study we proposes an effective content based image retrieval by color and texture based on wavelet coefficient method to achieve good retrieval in efficiency. Color feature extraction is done by color Histogram. The texture feature extraction is acquired by Gray Level Coocurence Matrix (GLCM) or Color Coocurence Matrix (CCM). This study provides better result for image retrieval by inte...

متن کامل

Image retrieval using the combination of text-based and content-based algorithms

Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...

متن کامل

Content Based Image Retrieval by Multi Features using Image Blocks

Content based image retrieval (CBIR) is an effective method of retrieving images from large image resources. CBIR is a technique in which images are indexed by extracting their low level features like, color, texture, shape, and spatial location, etc. Effective and efficient feature extraction mechanisms are required to improve existing CBIR performance. This paper presents a novel approach of ...

متن کامل

An Unsupervised Cluster-based Image Retrieval Algorithm using Relevance Feedback

Content-based image retrieval (CBIR) systems utilize low level query image feature as identifying similarity between a query image and the image database. Image contents are plays significant role for image retrieval. There are three fundamental bases for content-based image retrieval, i.e. visual feature extraction, multidimensional indexing, and retrieval system design. Each image has three c...

متن کامل

Enhancing capabilities of Texture Extraction for Color Image Retrieval

Content-Based Image Retrieval has been a major area of research in recent years. Efficient image retrieval with high precision would require an approach which combines usage of both the color and texture features of the image. In this paper we propose a method for enhancing the capabilities of texture based feature extraction and further demonstrate the use of these enhanced texture features in...

متن کامل

Low-level Features Extraction of an Image for CBIR: Techniques and Trends

Content-based Image Retrieval (CBIR) has gained much attention in the past decades. CBIR is a technique to retrieve images from an image database such that the retrieved images are semantically relevant to a query image provided by a user. It is based on representing images by using low-level visual features, which can be extracted from images such as color, texture and shape. Each of the featu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008